Choosability in signed planar graphs

نویسندگان

  • Li-gang Jin
  • Ying-li Kang
  • Eckhard Steffen
چکیده

This paper studies the choosability of signed planar graphs. We prove that every signed planar graph is 5-choosable and that there is a signed planar graph which is not 4-choosable while the unsigned graph is 4-choosable. For each k ∈ {3, 4, 5, 6}, every signed planar graph without circuits of length k is 4-choosable. Furthermore, every signed planar graph without circuits of length 3 and of length 4 is 3-choosable. We construct a signed planar graph with girth 4 which is not 3-choosable but the unsigned graph is 3-choosable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds on circular consecutive choosability

The circular consecutive choosability chcc(G) of a graph G has been recently introduced in [2]. In this paper we prove upper bounds on chcc for series-parallel graphs, planar graphs and k-choosable graphs. Our bounds are tight for classes of series-parallel graphs and k-choosable graphs for k ≥ 3. Then we study the circular consecutive choosability of generalized theta graphs. Lower bounds for ...

متن کامل

Acyclic improper choosability of graphs

We consider improper colorings (sometimes called generalized, defective or relaxed colorings) in which every color class has a bounded degree. We propose a natural extension of improper colorings: acyclic improper choosability. We prove that subcubic graphs are acyclically (3,1)∗-choosable (i.e. they are acyclically 3-choosable with color classes of maximum degree one). Using a linear time algo...

متن کامل

Choosability and edge choosability of planar graphs without five cycles

It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.

متن کامل

On Choosability with Separation of Planar Graphs with Forbidden Cycles

We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...

متن کامل

Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles

Let G be a planar graph with no two 3-cycles sharing an edge. We show that if ∆(G) ≥ 9, then χ′l(G) = ∆(G) and χ ′′ l (G) = ∆(G) + 1. We also show that if ∆(G) ≥ 6, then χ ′ l(G) ≤ ∆(G) + 1 and if ∆(G) ≥ 7, then χ′′ l (G) ≤ ∆(G) + 2. All of these results extend to graphs in the projective plane and when ∆(G) ≥ 7 the results also extend to graphs in the torus and Klein bottle. This second edge-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2016